Slurry injection to optimize nutrient use efficiency in maize: Soil nitrogen dynamics and plant nutrient status
نویسنده
چکیده
Slurry injection below maize seeds is a rather new application technique developed to improve the nitrogen use efficiency of liquid organic manure. To enable the characterization of the spatial and temporal soil mineral nitrogen (SMN) dynamics after slurry injection the present study aims to develop an appropriate soil sampling strategy. Three consecutive experiments were conducted. The first testing of the soil sampling approach was conducted in an existing field trial where the slurry was injected down to a depth of 12 cm (upper rim) below the soil surface. The soil profile (75 cm wide) centered below the maize row was sampled grid-like to a depth of 90 cm. Around the injection zone, soil monoliths (SM) were sampled using a purpose-built soil shovel. Below the SMs and in the interrow space (15 and 30 cm distance to the row) a standardized auger procedure was performed. The second experiment aimed at improving the sampling strategy with a focus on sample homogenization quality and necessary sample sizes per pooled sample. Furthermore, the risk of a carryover of slurry components along the soil core due to drilling an auger through a slurry band was analyzed. In the third experiment this improved sampling strategy was validated. Results from the first testing of the sampling procedure showed that the strategy is suitable, although some problems occurred (especially the high spread in values among the replications causing high coefficients of variation (CV) of mostly 40 – 60%). The improvement trial revealed that due to the high gradient of SMN concentration in the direct range of the injection zone an intensive homogenization of these samples is required. Suitable sample sizes (twelve auger samples and six soil monolith samples per pooled sample) have to be collected to obtain reliable SMN values. Drilling an auger through a slurry band to sample subjacent soil layers has to be avoided. Following this enhanced sampling strategy in the final validation trial the spread in values was considerably reduced and resulted in CV values of mostly < 20%. The developed sampling strategy enables the characterization of the spatial and temporal SMN dynamics when slurry has been band-injected below a maize row. The method can be transferred to other row crops and different slurry injection spacings.
منابع مشابه
Maize productivity and nutrient use efficiency in Western Kenya as affected by soil type and crop management
Low soil fertility and high weed infestation are the main culprits for the declining maize production inWestern Kenya. Technology packages to address these constraints exist, but their effectiveness is likely to be influenced by variability in soil types and farm management practices in the region. Trials were conducted during the 2008/2009 cropping seasons to investigate the nutrient use e...
متن کاملIntegrated nutrient management using deoiled Jatropha cake for sustained and economic food production
With growing environmental and energy concerns, Jatropha plantations are promoted in degraded/waste lands for the biodiesel production. Nutrient rich nonedible deoiled seed cake, a by-product of Jatropha left out after oil extraction was evaluated at the ICRISAT centre at Patancheru, India as an environment friendly source of nutrients for rainy season maize and soybean followed by postrain...
متن کاملRegulation of maize root growth by nitrogen nutrition
Response of root system architecture to nutrient availability in soils is an essential way for plants to adapt to soil environments. Nitrogen can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. On one hand, low soil N stimulate root elongation. On the other hand, localized nitrate stimulate lat...
متن کاملYield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China
Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm data...
متن کاملBiotechnology Approaches to Improving Maize Nitrogen Use Efficiency
Nitrogen (N) is an essential and often limiting nutrient to plant growth. Maize grain yields are highly responsive to supplemental N, leading to annual application of an estimated 10 million metric tons of N fertilizer to the maize crop worldwide (FAO 2004). Nearly all cultivated maize in developed countries receives some form of N fertilizer and N use is increasing in developing countries, whe...
متن کامل